AN OPERATOR PERSPECTIVE ON PDHG WITH APPLICATION TO
QUADRATIC PROGRAMMING

Tao Jiang
In collaboration with Walaa Moursi (UWaterloo), Stephen Vavasis (UWaterloo)

School of ORIE,
Cornell University

June 2, 2023



PRIMAL-DUAL HYBRID GRADIENT (PDHG)

Given the following convex problem, write its saddle form as follows

minf(Ax) +g(x) <« minsup L(x,y) := (y, Ax) — f*(y) +g(x),
xe YeR" yerm

where f, g are convex and lower semicontinuous.

The PDHG algorithm is to alternate proximal method in x, y with approximate extragradient:

N Prox.¢(x — TA*y)
<; +> = | Prox,+(y +0A (2x" —x)) (PDHG)

=xt+4(xt—x)

<x—x+> . ( T(A*y + 9g(xt)) ) . 7. )
* o (xt—x)yt
y-yt) “\olart + (&t —x) + o)) =\ O )




HISTORY OF PDHG

» Esser et al., Pock, Cremers, Bischof and Chambolle proposed PDHG at the same time.
» Attouch, Bricefio-Arias and Combettes introduced a similar framework with different splitting.
» O’Connor and Vandenberghe showed that PDHG is equivalent to Douglas-Rachford iteration.

» Applegate, Diaz, Lu, Lubin et al found that, among first-order methods, PDHG appears to be
the best in practice for LP.

Applegate et al. (work presented by Mateo earlier) focus on PDHG for LP:

» Characterize the behavior of PDHG in LP;
» Detect infeasibility using PDHG iterates for LP.

Can we characterize the behavior of PDHG and detect infeasibility for other problem classes?
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KEY CONTRIBUTIONS

Can we characterize the behavior of PDHG and detect infeasibility for other problem classes?

We partially answer the question through the lens of operator theory and convex optimization:

General Convex Problems:

(i) Offer insights of the PDHG operator and its iterative behavior;
(ii) Ongoing: seek problem structures that allow full characterization of the
behavior of PDHG and infeasibility detection.

Quadratic Programming (QP):

(i) Fully characterize the behavior of PDHG;
(ii) Detect infeasibility and establish certificates from PDHG iterates.



PDHG FOR CONVEX PROBLEMS

Recall the convex problem where f, ¢ are convex, l.s.c. and A : R" — R™.

minf(Ax)+g(x) &  min sup L(x.y) = (v, Ax) — () + g(x),

xeR? xeR" yeRm

We derive the operator form of PDHG update as follows:
xt Prox,¢(x — TA*y) o (x\ ag -1 (x
<y+> <Pr0xaf*(y—|—0A(2x+ -x))) g y) (M+ ( of ) +S) M y)’
where S := ( 0 4 ) and M := (T_Id o4 )

-A 0 A lid

Define v = <zx> to be the minimal M-norm element in tan (Id —T) :
Y
min ||7]|m

st. veran(Id-T),



INTERPRETATION OF ran (Id —T)

min sup L(xy) = 049 -0 +g. () =7 (5) = (M (5) +5) M (]),

xeR" yERm y+

We could measure the progress of the PDHG algorithm by monitoring

(xk — xk+1) _ (Id —T) (xk> € ran (Id —T).
Yk — Ykt Yk

» If 0 € ran (Id —T), then T admits fixed points and there is hope for {(xx, y) }ken to converge.
» If 0 ¢ ran (Id —T), then T does not have a fixed point and

(i) {(xx,yx) }ken diverges to infinity in norm;
(ii) the primal-dual problem does not have a solution.

Remark
For QP, the PDHG operator T has a fixed point (0 € ran (Id —T)) iff KKT admits a solution.



ASYMPTOTIC BEHAVIOR OF (X, Yx)

The observations of PDHG iterates so far are not quite quantifiable. However, we can analyze the
asymptotic behavior of {(xx, yk) }xeny with more assumptions on T:

<xk - xk+1> N <vx>
Yk — Yk+1 Oy ’

where v = argmin, cezn (14 1) ||4||m is the minimal norm element of van (Id —T).

Fact

If T is firmly nonexpansive, then

» If v, =0, then {x}reny converges.
» If v, # 0, then x; — x5, 1 — vy — 0, hence
(i) {xx}ken diverges to infinity in norm;
(ii) the primal-dual problem does not have a solution.

» The same result holds for vy.

Remark

v can be interpreted as a “gap” vector that measures how far the primal-dual problem is from having a
solution.



PDHG OPERATOR T

Definition (Firm nonexpansiveness)

An operator T is firmly nonexpansive if

(Vr,y €RY) | Tx = Ty|P* + [|(1d =T)x — (1 =T)y||* < [lx — y[|*.

Fact (Great things about firmly nonexpansive operators)

Suppose T: R" x R™ — R" x R™ is firmly nonexpansive. Let {(xk, Vi) }xen be a sequence generated by

xt x
=T .
<y+> (y>

(a) The sequence {(Xk, Yk) }ken satisfies

(i) (Pazy): 1 <xk> —— (%) and
Yk Uy
(ii) (Bruck-Reich): (xk B xk“) = <”J‘>
Yk = Yk+1 Oy

(b) Further assume Fix(v 4+ T) # () (equivalently v € ran (Id —T)). The sequence

(xx + kvx, yx + kvy )ken is Fejér monotone' with respect to Fix(v + T), hence bounded.

1{xk}keN is Fejér monotone with respect to Cif (Vx € C)(Vk € N) |[xg 1 — || < [lxg — x|



PDHG OPERATOR T

(02) = (ot malae ) =7 (0) = 0 () +9) "m0 ).
Claim

-1
Ifro|Al3 <1, then T = (M + (af* ) + S) M: R"™" — R"M s firmly nonexpansive w.r.t. || - ||m,

L1y —A* 0 A*
whereM.—<_A ;IdY>>0andS._<A 0>.

Proof.
Key fact: If F is maximally monotone, then (Id +F)~! is firmly nonexpansive.

positive definite maximally monotone
-1 1 1 1 1 1
T=(M+(£)+S) M=(d+M@F+5) M M= (1d+ M1 ( (JE)+s )

maximally monotone w.r.t. M-norm

O



ran (Id —T) AND ITS MINIMAL M-NORM ELEMENT v

Recall that v = argmin, cmm (14 1) [|#]|m encodes feasibility information and the iterative behavior of
the firmly nonexpansive PDHG operator T = (Id +M~(0F + S))~L.

The vector v and tan (Id —T) enjoy the following properties:

(i) ran (Id —T) is nearly convex, which implies tan (Id —T) is convex;
(ii) If ran (Id —T) is closed, then ran (Id —T) = 1an (Id —T) is convex and v € ran (Id —T);

(iii) ran (Id —T) = M1 (ran (( e ) n s)) ;
(iv) Tan (Id -T) = M1 (m ((;&(;;) ) + s))

Example (i) Let K be a closed convex cone in R":

inimi g (x) _
minipize g(x) 0 (0) = 08(x) x (Wie (y) +b)
subjectto Ax —b € K, s _ ( 0 A*)
- \-A 0

Example (ii) In addition, let H € R" — R" be linear, monotone and self-adjoint.

0g(x _
minimize  (x, Hx) + (c, ) (afg* (y))> = (Hx +¢) x (Nxs(y) +b)

xeR" 2 *
st. Ax —beKk, @ S _<—(1‘l %)



QUADRATIC PROGRAMMING

Consider the following QP and the corresponding PDHG update with step sizes 7 =0 =1

min  2xTHx 4 cTx + -1 T
2 (PQP) xt =H+1d)(x—A'y—o0),
s.t. Ax—b <0, y+ = ProjR:n_ (v + A2xt —x) —b). (PDHG)

The operator form of PDHG update is simply

) o (%) (H+1d)"Y(x— ATy —¢)

yt) = ¥ \y) T \Projey (v +AQH +1d) M (x — ATy —¢) —x) ~b) | (3)
Define v = <Zx > to be the minimal M-norm element in Tan (Id —Tgp) :

Y

min  ||v||m
s.t. veran(Id—Top),
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PDHG FOR QP: tan (Id —Tgp) AND MINIMAL M-NORM ELEMENT v

Recall that v = argmin,cmn (14 - Tgp) [[#[lM encodes feasibility information and the iterative behavior
of the firmly nonexpansive PDHG operator Tgp.
The set ran (Id —Tgp) satisfies the following properties

Lemma
(i) ran (Id —Tgp) is a union of finitely many polyhedral? sets.

(ii) ran (Id —Tgp) is convex and closed (so Tan (Id —Top) = ran (Id —Tgp)). In fact, ran (Id —Tgp) is
polyhedral.

(iii)

Uy — Huy = —Hw + ATy +c, }

ran (Id —=Tgp) = ¢ (tx,uy) :  uy <y,
uy, < Aw + b.

Asa consequence:

min vlo, — v;Avx + v; vy
min  ||o||m st. vy — Ho, = —Hw + ATy +c,
s.t. veran(Id—-Tgp), = vy <,
vy < Aw + b.

2Let C C X. We say that C is polyhedral if C is the intersection of finitely many halfspaces.

11 /18



PDHG FOR QP: INFEASIBILITY DETECTION

min 3zTHz + bTy
(PQP) st. ATy+c=Hz, (DQP)
y=0.

min %XTHX +cTx
st. Ax—b <0,

Theorem
(PQP) is infeasible if and only if vy, # 0, and in this case, v, is an infeasibility certificate for (PQP).
Proof.

Goal: Prove that v, # 0 < ATvy =0, bTvy > 0 (Theorem follows using Farkas lemma).
Step 1: Write the minimal norm problem that finds (vy,vy) and its Lagrangian dual:

max —ATN/2 4 ETAN — €T¢/2 — cTA - bT¢

min o], = vyor — v, Avx + )0, st. HA—AT¢ =0,
s.t. vy — Hoy = —Hw + ATy +, AN+ =0,
vy <y, w >0,
vygAw—i—b. £>0.

Step 2: KKT condition implies ATv, = 0 and b'v, = ZJ; vy.
Step 3: vy, # 0 & bTvy > 0 & (PQP) is infeasible (by Farkas Lemma).



PDHG FOR QP: INFEASIBILITY DETECTION

min 3zTHz + bTy
(PQP) s.t. ATy +c=Hz, (DQP)
y>0.

min %XTHX +cTx
st. Ax—b<0,

Theorem
(DQP) is infeasible if and only if vy # 0, and in this case, vy is an infeasibility certificate for (DQP).
Proof.

Goal: Prove that v, # 0 < Av, < 0, (Hz — ¢)Tv, > 0 Vz (rest follows from Farkas lemma).
Step 1: Write the minimal norm problem that finds (v,,vy) and its Lagrangian dual:

max —A N2 4 ETAN — €T¢/2 — cTA - bT¢

min ol = vlv, — o) Avy + vl v, st. H\N—AT¢ =
st. vy — Hvu,=—-Hw+ AT]/ +c, AN+ =0,
vy <, p =0,
vy < Aw +b. £>0.

Step 2: KKT condition implies Av, < 0 and (Hz — ¢)’v, > vlv, for any z.
Step 3: vy # 0 < (Hz — ¢)Tvy > 0 Vz & (DQP) is infeasible (by Farkas Lemma).



PDHG FOR QP: DYNAMIC BEHAVIOR

Theorem
Let {(xx, yx) }xen denote the sequence generated by PDHG update (ﬁ ) = Tap(y ). Then 3o > 0

(xx + kox, yx + kvy) — (X", y*) € av + Fix(v + Tgp),

where v = argmin e an (1a - 10p) l|4|lm 8 the minimal M-norm element of ran (Id —Tgp).

Remark

Analogous results are only known for any f.n.e. affine operator and PDHG operator in LP. It is unclear what
other operator structure also admits such convergence behavior.

Consequently, v fully characterizes the behavior of PDHG iterates as follows:
(i) Ifox =0, v, =0, then (x,yx) — (x*,y*), which is the primal-dual solution.
(ii) If vy # 0, v, # 0, then (xx, yx) diverges along the ray {—a(vx, vy) }ao0-

(iii) If vy = 0, vy # O, then (x4, yx) diverges along the ray {—«/(0,vy)}a>0.

(iv) If vy # 0, vy = 0, then (x, yx) diverges along the ray {—a(vx,0)}a>0.
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PDHG FOR QP: DYNAMIC BEHAVIOR

Theorem
Let {(xx, yi) tken denote the sequence generated by PDHG update ( ﬁ ) = TQP( f) Then 3o > 0

(xx + kox, yx + koy) — (X", y") € av + Fix(v + Tgp),

where v = argmin, e an (1d ~10p) l|4llm I8 the minimal M-norm element of ran (Id —Tgp).

Proof.

Goal: Prove (3K € N,a > 0), {(xg4x + (k + K)oy, yrix + (k + K)vy) fken — av + Fix(v + Tgp).

. Xi+K + kvx> B ‘ <x1<> ,
Step 1: (Vk € N), = T, ,and F T, .
ep 1: ( ) <yk+1< 1 ko, (v+ Taop) yx and Fix(v + Tgp) # 0

ka( + (k + K)'Ux
Step 2:
°P (yk+1< + (k+ K)oy

Step 3: Since Fix(v + Tgp) = R - v + Fix(v + Tqp), there exists o > 0 such that

) — (0 + Tap)* <5K> + Kv — Fix(v + Top) + Kv
K

Fix(v + Tgp) + Kv — av = Fix(v + Tgp).



PDHG FOR QP: SUMMARY

Given quadratic programming and PDHG update,

in  LyT T ,
min ;X Hx +c'x (PQP) xt = (H+1d) ' (x— ATy —0),

st. Ax—b <0, yt o= PrOjRT- (y+A(2xt —x) —b), (PDHG)

we observe the following four scenarios:
1) (xk,yx) = (x5, y%): vx = 0,0, =0;
both problems are feasible; (x*, y*) is an optimal primal-dual solution.
(i) (xx + kox, yx + koy) — (x*,y*): vx # 0,0, # 0;
both problems are infeasible; vy, v, are infeasibility certificates for (DQP), (PQP) respectively.
(iif) (xkayk + kvy) - (x*vy*): Oy = Ovvy #0;
(PQP) is infeasible; vy, is an infeasibility certificate for (PQP).

(iv) (xx + kvx,yx) — (x*,y%): vx # 0,0, = 0;
(DQP) is infeasible; vy is an infeasibility certificate for (DQP).
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EXAMPLE: REALLY SIMPLE SOCP

Consider the following SOCP:

T
. 0 X1
min _
C X max 1y

st x =7, (PSOCP) ot < 0 ) _y( ! > - (DSOCP)
( x| > e Cit, ¢ 0

X

The following observations hold:

(i)

QO NI—
N—
_l’_
7N
a O
SN—

Uy Y <
ran (Id —Tsocp) = (ux, uy) : w=<u
— "X

uy = Jwy +r,
which is closed and convex.
(i) Fix(v+ T) # 0, equivalently, v € ran (Id —T).
(iii) (PSOCP) is infeasible iff v, # 0, and in this case, v, is an infeasibility certificate for (PSOCP).
(iv) The sequence (xi + kovy, yx + kvy )ken is Fejér monotone w.r.t. Fix(v + T), hence bounded.



OPEN PROBLEMS AND FUTURE DIRECTIONS

» Under what condition is {(xx + kvx, yx + kvy) }ken convergent?
» Under what condition is v € ran (Id —T)?
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