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PRIMAL-DUAL HYBRID GRADIENT (PDHG)

Given the following convex problem, write its saddle form as follows

min
x∈Rn

f (Ax) + g(x) ⇔ min
x∈Rn

sup
y∈Rm

L(x, y) := ⟨y,Ax⟩ − f ∗(y) + g(x),

where f , g are convex and lower semicontinuous.

The PDHG algorithm is to alternate proximal method in x, y with approximate extragradient:

(
x+

y+

)
=

 Proxτg(x − τA∗y)
Proxσf∗(y + σA (2x+ − x)︸ ︷︷ ︸

=x++(x+−x)

)

 (PDHG)

⇔
(

x − x+

y − y+

)
∈
(

τ(A∗y + ∂g(x+))
σ(Ax+ + (x+ − x) + ∂f ∗(y+))

)
∈

(
τ · ∂L(x+,y)

∂x

σ · ∂L(x++(x+−x),y+)
∂y+

)
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HISTORY OF PDHG

▶ Esser et al., Pock, Cremers, Bischof and Chambolle proposed PDHG at the same time.
▶ Attouch, Briceño-Arias and Combettes introduced a similar framework with different splitting.
▶ O’Connor and Vandenberghe showed that PDHG is equivalent to Douglas-Rachford iteration.
▶ Applegate, Díaz, Lu, Lubin et al found that, among first-order methods, PDHG appears to be

the best in practice for LP.

Applegate et al. (work presented by Mateo earlier) focus on PDHG for LP:
▶ Characterize the behavior of PDHG in LP;
▶ Detect infeasibility using PDHG iterates for LP.

Can we characterize the behavior of PDHG and detect infeasibility for other problem classes?
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KEY CONTRIBUTIONS

Can we characterize the behavior of PDHG and detect infeasibility for other problem classes?

We partially answer the question through the lens of operator theory and convex optimization:

General Convex Problems:

(i) Offer insights of the PDHG operator and its iterative behavior;
(ii) Ongoing: seek problem structures that allow full characterization of the

behavior of PDHG and infeasibility detection.

Quadratic Programming (QP):

(i) Fully characterize the behavior of PDHG;
(ii) Detect infeasibility and establish certificates from PDHG iterates.
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PDHG FOR CONVEX PROBLEMS

Recall the convex problem where f , g are convex, l.s.c. and A : Rn → Rm.

min
x∈Rn

f (Ax) + g(x) ⇔ min
x∈Rn

sup
y∈Rm

L(x, y) := ⟨y,Ax⟩ − f ∗(y) + g(x),

We derive the operator form of PDHG update as follows:(
x+

y+

)
=

(
Proxτg(x − τA∗y)

Proxσf∗(y + σA(2x+ − x))

)
= T

(
x
y

)
=
(

M +
(

∂g
∂f∗

)
+ S
)−1

M
(

x
y

)
,

where S :=

(
0 A∗

−A 0

)
and M :=

( 1
τ Id −A∗

−A 1
σ Id

)
.

Define v =

(
vx
vy

)
to be the minimal M-norm element in ran (Id−T) :

min ∥v∥M
s.t. v ∈ ran (Id−T),
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INTERPRETATION OF ran (Id−T)

min
x∈Rn

sup
y∈Rm

L(x, y) := ⟨y,Ax⟩ − f ∗(y) + g(x),
(

x+

y+

)
= T

(
x
y

)
=
(

M +
(

∂g
∂f∗

)
+ S
)−1

M
(

x
y

)
,

We could measure the progress of the PDHG algorithm by monitoring(
xk − xk+1
yk − yk+1

)
= (Id−T)

(
xk
yk

)
∈ ran (Id−T).

▶ If 0 ∈ ran (Id−T), then T admits fixed points and there is hope for {(xk, yk)}k∈N to converge.
▶ If 0 /∈ ran (Id−T), then T does not have a fixed point and

(i) {(xk, yk)}k∈N diverges to infinity in norm;
(ii) the primal-dual problem does not have a solution.

Remark
For QP, the PDHG operator T has a fixed point (0 ∈ ran (Id−T)) iff KKT admits a solution.
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ASYMPTOTIC BEHAVIOR OF (xk, yk)

The observations of PDHG iterates so far are not quite quantifiable. However, we can analyze the
asymptotic behavior of {(xk, yk)}k∈N with more assumptions on T:

Fact
If T is firmly nonexpansive, then (

xk − xk+1
yk − yk+1

)
→
(

vx
vy

)
,

where v = argminu∈ran (Id−T) ∥u∥M is the minimal norm element of ran (Id−T).

▶ If vx = 0, then {xk}k∈N converges.
▶ If vx ̸= 0, then xk − xk+1 − vx → 0, hence

(i) {xk}k∈N diverges to infinity in norm;
(ii) the primal-dual problem does not have a solution.

▶ The same result holds for vy.

Remark
v can be interpreted as a “gap" vector that measures how far the primal-dual problem is from having a
solution.
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PDHG OPERATOR T

Definition (Firm nonexpansiveness)

An operator T is firmly nonexpansive if

(∀x, y ∈ Rd) ∥Tx − Ty∥2 + ∥(Id−T)x − (Id−T)y∥2 ≤ ∥x − y∥2.

Fact (Great things about firmly nonexpansive operators)

Suppose T : Rn × Rm → Rn × Rm is firmly nonexpansive. Let {(xk, yk)}k∈N be a sequence generated by(
x+

y+

)
= T

(
x
y

)
.

(a) The sequence {(xk, yk)}k∈N satisfies

(i) (Pazy): 1
k

(
xk
yk

)
→ −

(
vx
vy

)
and

(ii) (Bruck–Reich):
(

xk − xk+1
yk − yk+1

)
→
(

vx
vy

)
(b) Further assume Fix(v + T) ̸= ∅ (equivalently v ∈ ran (Id−T)). The sequence

(xk + kvx, yk + kvy)k∈N is Fejér monotone1 with respect to Fix(v + T), hence bounded.

1{xk}k∈N is Fejér monotone with respect to C if (∀x ∈ C)(∀k ∈ N) ∥xk+1 − x∥ ≤ ∥xk − x∥
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PDHG OPERATOR T

(
x+

y+

)
=

(
Proxτg(x − τA∗y)

Proxσf∗(y + σA(2x+ − x))

)
= T

(
x
y

)
=
(

M +
(

∂g
∂f∗

)
+ S
)−1

M
(

x
y

)
.

Claim

If τσ∥A∥2
2 < 1, then T =

(
M +

(
∂g
∂f∗

)
+ S
)−1

M : Rn+m → Rn+m is firmly nonexpansive w.r.t. ∥ · ∥M,

where M :=

( 1
τ IdX −A∗

−A 1
σ IdY

)
≻ 0 and S :=

(
0 A∗

−A 0

)
.

Proof.

Key fact: If F is maximally monotone, then (Id+F)−1 is firmly nonexpansive.

T =
(

M +
(

∂g
∂f∗

)
+ S
)−1

M = (Id+M−1(∂F + S))−1M−1M = (Id+

positive definite︷︸︸︷
M−1 (

maximally monotone︷ ︸︸ ︷(
∂g
∂f∗

)
+ S )︸ ︷︷ ︸

maximally monotone w.r.t. M-norm

)−1.
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ran (Id−T) AND ITS MINIMAL M-NORM ELEMENT v

Recall that v = argminu∈ran (Id−T) ∥u∥M encodes feasibility information and the iterative behavior of
the firmly nonexpansive PDHG operator T = (Id+M−1(∂F + S))−1.

The vector v and ran (Id−T) enjoy the following properties:

(i) ran (Id−T) is nearly convex, which implies ran (Id−T) is convex;
(ii) If ran (Id−T) is closed, then ran (Id−T) = ran (Id−T) is convex and v ∈ ran (Id−T);

(iii) ran (Id−T) = M−1
(
ran

((
∂g(x)
∂f∗(y)

)
+ S
))

;

(iv) ran (Id−T) = M−1
(
ran

((
∂g(x)
∂f∗(y)

)
+ S
))

.

Example (i) Let K be a closed convex cone in Rm:

minimize
x∈Rn

g(x)

subject to Ax − b ∈ K,
(1)

f = ιK(· − b) , f ∗ = ιK⊖(·) + ⟨b, ·⟩(
∂g(x)
∂f∗(y)

)
= ∂g(x)× (NK⊖(y) + b)

S =

(
0 A∗

−A 0

)
Example (ii) In addition, let H ∈ Rn → Rn be linear, monotone and self-adjoint.

minimize
x∈Rn

1
2⟨x,Hx⟩+ ⟨c, x⟩

s.t. Ax − b ∈ K,
(2)

(
∂g(x)
∂f∗(y)

)
= (Hx + c)× (NK⊖(y) + b)

S =

(
0 A∗

−A 0

)
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QUADRATIC PROGRAMMING

Consider the following QP and the corresponding PDHG update with step sizes τ = σ = 1

min 1
2 xTHx + cTx

s.t. Ax − b ≤ 0,
(PQP) x+ := (H + Id)−1(x − ATy − c),

y+ := ProjRm
+
(y + A(2x+ − x)− b) . (PDHG)

The operator form of PDHG update is simply

(
x+

y+

)
= TQP

(
x
y

)
:=

(
(H + Id)−1(x − ATy − c)

ProjRm
+

(
y + A(2(H + Id)−1(x − ATy − c)− x)− b

)) . (3)

Define v =

(
vx
vy

)
to be the minimal M-norm element in ran (Id−TQP) :

min ∥v∥M
s.t. v ∈ ran (Id−TQP),

10 / 18



PDHG FOR QP: ran (Id−TQP) AND MINIMAL M-NORM ELEMENT v

Recall that v = argminu∈ran (Id−TQP)
∥u∥M encodes feasibility information and the iterative behavior

of the firmly nonexpansive PDHG operator TQP.
The set ran (Id−TQP) satisfies the following properties

Lemma

(i) ran (Id−TQP) is a union of finitely many polyhedral2 sets.

(ii) ran (Id−TQP) is convex and closed (so ran (Id−TQP) = ran (Id−TQP)). In fact, ran (Id−TQP) is
polyhedral.

(iii)

ran (Id−TQP) =

(ux,uy) :
ux − Hux = −Hw + ATy + c,
uy ≤ y,
uy ≤ Aw + b.

 .

As a consequence:

min ∥v∥M
s.t. v ∈ ran (Id−TQP), ⇔

min vT
x vx − vT

y Avx + vT
y vy

s.t. vx − Hvx = −Hw + ATy + c,
vy ≤ y,
vy ≤ Aw + b.

2Let C ⊆ X. We say that C is polyhedral if C is the intersection of finitely many halfspaces.
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PDHG FOR QP: INFEASIBILITY DETECTION

min 1
2 xTHx + cTx

s.t. Ax − b ≤ 0,
(PQP)

min 1
2 zTHz + bTy

s.t. ATy + c = Hz,
y ≥ 0.

(DQP)

Theorem
(PQP) is infeasible if and only if vy ̸= 0, and in this case, vy is an infeasibility certificate for (PQP).

Proof.

Goal: Prove that vy ̸= 0 ⇔ ATvy = 0, bTvy > 0 (Theorem follows using Farkas lemma).
Step 1: Write the minimal norm problem that finds (vx, vy) and its Lagrangian dual:

min ∥v∥2
M = vT

x vx − vT
y Avx + vT

y vy

s.t. vx − Hvx = −Hw + ATy + c,
vy ≤ y,
vy ≤ Aw + b.

max −λTλ/2 + ξTAλ− ξTξ/2 − cTλ− bTξ
s.t. Hλ− ATξ = 0,

Aλ+ µ = 0,
µ ≥ 0,
ξ ≥ 0.

Step 2: KKT condition implies ATvy = 0 and bTvy = vT
y vy.

Step 3: vy ̸= 0 ⇔ bTvy > 0 ⇔ (PQP) is infeasible (by Farkas Lemma).
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PDHG FOR QP: INFEASIBILITY DETECTION

min 1
2 xTHx + cTx

s.t. Ax − b ≤ 0,
(PQP)

min 1
2 zTHz + bTy

s.t. ATy + c = Hz,
y ≥ 0.

(DQP)

Theorem
(DQP) is infeasible if and only if vx ̸= 0, and in this case, vx is an infeasibility certificate for (DQP).

Proof.

Goal: Prove that vx ̸= 0 ⇔ Avx ≤ 0, (Hz − c)Tvx > 0 ∀z (rest follows from Farkas lemma).
Step 1: Write the minimal norm problem that finds (vx, vy) and its Lagrangian dual:

min ∥v∥M = vT
x vx − vT

y Avx + vT
y vy

s.t. vx − Hvx = −Hw + ATy + c,
vy ≤ y,
vy ≤ Aw + b.

max −λTλ/2 + ξTAλ− ξTξ/2 − cTλ− bTξ
s.t. Hλ− ATξ = 0,

Aλ+ µ = 0,
µ ≥ 0,
ξ ≥ 0.

Step 2: KKT condition implies Avx ≤ 0 and (Hz − c)Tvx ≥ vT
x vx for any z.

Step 3: vx ̸= 0 ⇔ (Hz − c)Tvx > 0 ∀z ⇔ (DQP) is infeasible (by Farkas Lemma).
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PDHG FOR QP: DYNAMIC BEHAVIOR

Theorem
Let {(xk, yk)}k∈N denote the sequence generated by PDHG update

(
x+
y+

)
= TQP

( x
y
)
. Then ∃α ≥ 0

(xk + kvx, yk + kvy) → (x∗, y∗) ∈ αv + Fix(v + TQP),

where v = argminu∈ran (Id−TQP)
∥u∥M is the minimal M-norm element of ran (Id−TQP).

Remark
Analogous results are only known for any f.n.e. affine operator and PDHG operator in LP. It is unclear what
other operator structure also admits such convergence behavior.

Consequently, v fully characterizes the behavior of PDHG iterates as follows:
(i) If vx = 0, vy = 0, then (xk, yk) → (x∗, y∗), which is the primal-dual solution.

(ii) If vx ̸= 0, vy ̸= 0, then (xk, yk) diverges along the ray {−α(vx, vy)}α≥0.
(iii) If vx = 0, vy ̸= 0, then (xk, yk) diverges along the ray {−α(0, vy)}α≥0.
(iv) If vx ̸= 0, vy = 0, then (xk, yk) diverges along the ray {−α(vx, 0)}α≥0.
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PDHG FOR QP: DYNAMIC BEHAVIOR

Theorem
Let {(xk, yk)}k∈N denote the sequence generated by PDHG update

(
x+
y+

)
= TQP

( x
y
)
. Then ∃α ≥ 0

(xk + kvx, yk + kvy) → (x∗, y∗) ∈ αv + Fix(v + TQP),

where v = argminu∈ran (Id−TQP)
∥u∥M is the minimal M-norm element of ran (Id−TQP).

Proof.

Goal: Prove (∃K ∈ N, α ≥ 0), {(xk+K + (k + K)vx, yk+K + (k + K)vy)}k∈N → αv + Fix(v + TQP).

Step 1: (∀k ∈ N),
(

xk+K + kvx
yk+K + kvy

)
= (v + TQP)

k
(

xK
yK

)
, and Fix(v + TQP) ̸= ∅.

Step 2:
(

xk+K + (k + K)vx
yk+K + (k + K)vy

)
→ (v + TQP)

k
(

xK
yK

)
+ Kv → Fix(v + TQP) + Kv

Step 3: Since Fix(v + TQP) = R− · v + Fix(v + TQP), there exists α > 0 such that

Fix(v + TQP) + Kv − αv = Fix(v + TQP).
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PDHG FOR QP: SUMMARY

Given quadratic programming and PDHG update,

min 1
2 xTHx + cTx

s.t. Ax − b ≤ 0,
(PQP) x+ := (H + Id)−1(x − ATy − c),

y+ := ProjRm
+
(y + A(2x+ − x)− b) , (PDHG)

we observe the following four scenarios:
(i) (xk, yk) → (x∗, y∗): vx = 0, vy = 0;

both problems are feasible; (x∗, y∗) is an optimal primal-dual solution.
(ii) (xk + kvx, yk + kvy) → (x∗, y∗): vx ̸= 0, vy ̸= 0;

both problems are infeasible; vx, vy are infeasibility certificates for (DQP), (PQP) respectively.
(iii) (xk, yk + kvy) → (x∗, y∗): vx = 0, vy ̸= 0;

(PQP) is infeasible; vy is an infeasibility certificate for (PQP).
(iv) (xk + kvx, yk) → (x∗, y∗): vx ̸= 0, vy = 0;

(DQP) is infeasible; vx is an infeasibility certificate for (DQP).
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EXAMPLE: REALLY SIMPLE SOCP

Consider the following SOCP:

min

(
0
c

)T ( x1
x̄

)
s.t. 1

2 x1 = r,(
x1
x̄

)
∈ Cd+1

2 .

(PSOCP)
max ry

s.t.
(

0
c

)
− y

( 1
2
0

)
⪰ 0

(DSOCP)

The following observations hold:
(i)

ran (Id−TSOCP) =

(ux,uy) :

ux ⪯ y
( 1

2
0

)
+

(
0
c

)
,

w ⪯ ux,

uy = 1
2 w1 + r,

 .

which is closed and convex.
(ii) Fix(v + T) ̸= ∅, equivalently, v ∈ ran (Id−T).

(iii) (PSOCP) is infeasible iff vy ̸= 0, and in this case, vy is an infeasibility certificate for (PSOCP).
(iv) The sequence (xk + kvx, yk + kvy)k∈N is Fejér monotone w.r.t. Fix(v + T), hence bounded.
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OPEN PROBLEMS AND FUTURE DIRECTIONS

▶ Under what condition is {(xk + kvx, yk + kvy)}k∈N convergent?
▶ Under what condition is v ∈ ran (Id−T)?
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