Certifying clusters from sum-of-norms clustering

Tao Jiang¹ Stephen Vavasis²

¹Cornell University, School of Operations Research and Information Engineering

²University of Waterloo, Combinatorics & Optimization

Clustering

Informally: Given *n* points $a_1, \ldots, a_n \in \mathbb{R}^d$, partition $\{1, \ldots, n\}$ into k subsets C_1, \ldots, C_k such that for $i \in C_m, i' \in C_{m'}$, $dist(a_i, a_{i'})$ is small iff m = m'.

3

イロト イポト イヨト イヨト

Clustering

Informally: Given *n* points $a_1, \ldots, a_n \in \mathbb{R}^d$, partition $\{1, \ldots, n\}$ into k subsets C_1, \ldots, C_k such that for $i \in C_m, i' \in C_{m'}$, $dist(a_i, a_{i'})$ is small iff m = m'.

Figure: Visualization of a possible clustering

・ロト ・ 同ト ・ ヨト ・ ヨト

Example: Clustering (d = 2, n = 20)

(日) (四) (日) (日) (日)

Example: Clustering (d = 2, n = 20)

Yellow nodes are in singleton clusters.

・ 何 ト ・ ヨ ト ・ ヨ ト

Best known method for clustering is Lloyd's algorithm ("k-means"). Assume k (number of clusters) is part of the input.

Best known method for clustering is Lloyd's algorithm ("k-means"). Assume k (number of clusters) is part of the input.

1. Randomly partition *n* points into *k* random subsets C_1, \ldots, C_k , which serve as initial clusters.

Best known method for clustering is Lloyd's algorithm ("k-means"). Assume k (number of clusters) is part of the input.

- 1. Randomly partition *n* points into *k* random subsets C_1, \ldots, C_k , which serve as initial clusters.
- 2. Alternate the following two operations until the cluster assignments stop changing:
 - (a) For each cluster C_i , compute the cluster centroids.

ヘロト 人間 ト イヨト イヨト

Best known method for clustering is Lloyd's algorithm ("k-means"). Assume k (number of clusters) is part of the input.

- 1. Randomly partition *n* points into *k* random subsets C_1, \ldots, C_k , which serve as initial clusters.
- 2. Alternate the following two operations until the cluster assignments stop changing:
 - (a) For each cluster C_i , compute the cluster centroids.
 - (b) Assign each observation to the cluster whose centroid is closest.

ヘロト 人間 ト イヨト イヨト

Best known method for clustering is Lloyd's algorithm ("k-means"). Assume k (number of clusters) is part of the input.

- 1. Randomly partition *n* points into *k* random subsets C_1, \ldots, C_k , which serve as initial clusters.
- 2. Alternate the following two operations until the cluster assignments stop changing:
 - (a) For each cluster C_i , compute the cluster centroids.
 - (b) Assign each observation to the cluster whose centroid is closest.

Issues with Lloyd's algorithm

Corresponds to nonconvex optimization, so many local minimizers,

- \rightarrow sensitive to initialization;
- \rightarrow hard to prove properties of clustering output.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sum-of-norms clustering

Find clusters by solving the convex optimization problem:

$$\min_{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n} \frac{1}{2} \sum_{i=1}^n \|\boldsymbol{x}_i - \boldsymbol{a}_i\|^2 + \lambda \sum_{1 \le i < j \le n} \|\boldsymbol{x}_i - \boldsymbol{x}_j\|,$$

which is known as the sum-of-norms clustering¹.

 1 Discovered independently by Pelckmans et al. (2005), Lindsten et al. (2011), Hocking et al. (2011).

²Hocking et al. (2011), Chiquet et al (2014)

Sum-of-norms clustering

Find clusters by solving the convex optimization problem:

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \leq i < j \leq n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|,$$

which is known as the sum-of-norms clustering¹.

	Lloyd's algorithm	Sum-of-norms clustering
convexity	non-convex	strongly convex
minimizers	many local minimizers	unique local (and global) minimizer
initialization	sensitive to initialization	independent of initialization
cluster output	hard to prove properties	agglomerative ² , recovery of MoG^3

¹Discovered independently by Pelckmans et al. (2005), Lindsten et al. (2011), Hocking et al. (2011).

²Hocking et al. (2011), Chiquet et al (2014)

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \le i < j \le n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

э

<ロト <回ト < 回ト < 回ト -

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \le i < j \le n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

Data a_i 's: Given *n* observations a_1, \ldots, a_n

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \le i < j \le n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

Variable x_i 's: Define unconstrained variable x_i for i = 1, ..., n. We may interpret the optimal x_i^* as the cluster centroid that i is closest to.

・ロト ・ 同ト ・ ヨト ・ ヨト

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \le i < j \le n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

Intuition: first term favors x_i^* close to a_i , while second term tends to make x_i^* for many *i*'s equal to each other.

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \le i < j \le n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

Intuition: first term favors x_i^* close to a_i , while second term tends to make x_i^* for many *i*'s equal to each other.

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \le i < j \le n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

Cluster recovery: points *i*, *j* get clustered together iff $\mathbf{x}_i^* = \mathbf{x}_i^*$

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \le i < j \le n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

Role of λ : when $\lambda = 0$, all noncoincident a_i 's are in singleton clusters.

< □ > < 同 > < 回 > < 回 > < 回 >

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \le i < j \le n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

Role of λ : there exists $\overline{\lambda}$ (depending on data) such that for all $\lambda \geq \overline{\lambda}$, all a_i 's are in one large cluster.

・ロト ・ 同ト ・ ヨト ・ ヨト

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \le i < j \le n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

Role of λ : as λ increases, number of clusters goes down. Thus, λ controls the number of clusters indirectly.

・ 何 ト ・ ヨ ト ・ ヨ ト

Issue: Identifying the clusters apparently requires exact knowledge of the optimizer, but all known algorithms are iterative.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Issue: Identifying the clusters apparently requires exact knowledge of the optimizer, but all known algorithms are iterative.

How to identify clusters from *an approximate solution* with *mathematical guarantee* instead of using *an exact optimizer*?

・ 何 ト ・ ヨ ト ・ ヨ ト

Issue: Identifying the clusters apparently requires exact knowledge of the optimizer, but all known algorithms are iterative.

Let x'_1, \ldots, x'_n be an approximate optimizer from an iterative method.

イロト 不得 トイヨト イヨト

Issue: Identifying the clusters apparently requires exact knowledge of the optimizer, but all known algorithms are iterative.

Authors in practice use a tolerance:

say *i*, *j* are in the same cluster if $\|\mathbf{x}'_i - \mathbf{x}'_i\| \le \epsilon$.

Issue: Identifying the clusters apparently requires exact knowledge of the optimizer, but all known algorithms are iterative.

For which ϵ is the recovery of the true clustering guaranteed? Do the recovery of a MoG and the agglomerative property still hold?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Issue: Identifying the clusters apparently requires exact knowledge of the optimizer, but all known algorithms are iterative.

What if $\|\mathbf{x}'_1 - \mathbf{x}'_2\| < \epsilon$, $\|\mathbf{x}'_1 - \mathbf{x}'_3\| < \epsilon$, $\|\mathbf{x}'_2 - \mathbf{x}'_3\| > \epsilon$?

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem 1. If the test reports 'success', then the clusters are correctly identified.

A 回 > A 回 > A 回 >

Theorem 1. If the test reports 'success', then the clusters are correctly identified.

Theorem 2. If an interior-point algorithm is used, then the test is guaranteed to report 'success' after a finite number of iterations except

A 回 > A 回 > A 回 >

 \ldots the test may never report 'success' for the particular values of λ at which clusters fuse to form a larger cluster.

イロト イポト イヨト イヨト

 \ldots the test may never report 'success' for the particular values of λ at which clusters fuse to form a larger cluster.

Because of the agglomeration property, there are at most *n* such discrete values of λ for which the test may never succeed.

・ 同 ト ・ ヨ ト ・ ヨ ト

Input: a primal and dual feasible solution (\mathbf{x}', ω'), duality gap μ

3

イロト イヨト イヨト イヨト

Input: a primal and dual feasible solution (\mathbf{x}', ω') , duality gap μ **Step 0.** Determine all clusters greedily according to \mathbf{x}', μ :

э

< □ > < □ > < □ > < □ > < □ > < □ >

Input: a primal and dual feasible solution (\mathbf{x}', ω') , duality gap μ **Step 0.** Determine all clusters greedily according to \mathbf{x}', μ : **Step 1.** Compute subgradients from (\mathbf{x}', ω') and check if they satisfy the CGR condition (will specify later).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Input: a primal and dual feasible solution (x', ω'), duality gap μ

- **Step 0.** Determine all clusters greedily according to x', μ :
- **Step 1.** Compute subgradients from (\mathbf{x}', ω') and check if they satisfy the CGR condition (will specify later).
 - **True:** points clustered in Step 0 indeed belong in the same cluster, proceed to Step 2.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Input: a primal and dual feasible solution (x', ω'), duality gap μ

- **Step 0.** Determine all clusters greedily according to x', μ :
- **Step 1.** Compute subgradients from (\mathbf{x}', ω') and check if they satisfy the CGR condition (will specify later).

True: points clustered in Step 0 indeed belong in the same cluster, proceed to Step 2.

False: the test reports "failure".

- 4 回 ト 4 ヨ ト 4 ヨ ト

Input: a primal and dual feasible solution ($\textbf{\textit{x}}', \omega')$, duality gap μ

- **Step 0.** Determine all clusters greedily according to \mathbf{x}', μ :
- **Step 1.** Compute subgradients from (\mathbf{x}', ω') and check if they satisfy the CGR condition (will specify later).

True: points clustered in Step 0 indeed belong in the same cluster, proceed to Step 2.

False: the test reports "failure".

Input: a primal and dual feasible solution (x', $\omega')$, duality gap μ

- **Step 0.** Determine all clusters greedily according to x', μ :
- **Step 1.** Compute subgradients from (\mathbf{x}', ω') and check if they satisfy the CGR condition (will specify later).
- **Step 2.** Check that no two clusters are distance $\leq c_n \mu^{1/2}$ of each other.

Input: a primal and dual feasible solution (x', $\omega')$, duality gap μ

- **Step 0.** Determine all clusters greedily according to x', μ :
- **Step 1.** Compute subgradients from (\mathbf{x}', ω') and check if they satisfy the CGR condition (will specify later).
- **Step 2.** Check that no two clusters are distance $\leq c_n \mu^{1/2}$ of each other. **True:** all clusters identified in step 0 are distinct.

・ 雪 ト ・ ヨ ト ・ ヨ ト

Input: a primal and dual feasible solution (x', $\omega')$, duality gap μ

- **Step 0.** Determine all clusters greedily according to x', μ :
- **Step 1.** Compute subgradients from (\mathbf{x}', ω') and check if they satisfy the CGR condition (will specify later).
- **Step 2.** Check that no two clusters are distance $\leq c_n \mu^{1/2}$ of each other. **True:** all clusters identified in step 0 are distinct. **False:** the test reports "failure".

Jiang, Vavasis (Cornell, Waterloo)

通 ト イ ヨ ト イ ヨ ト

Input: a primal and dual feasible solution (x', $\omega')$, duality gap μ

- **Step 0.** Determine all clusters greedily according to x', μ :
- **Step 1.** Compute subgradients from (\mathbf{x}', ω') and check if they satisfy the CGR condition (will specify later).
- **Step 2.** Check that no two clusters are distance $\leq c_n \mu^{1/2}$ of each other. **True:** all clusters identified in step 0 are distinct. **False:** the test reports "failure".

Jiang, Vavasis (Cornell, Waterloo)

< 回 > < 回 > < 回 > <

CGR condition

Step 1. Compute subgradients from (\mathbf{x}', ω') and check if they satisfy the CGR condition.

True: points clustered in Step 0 indeed belong in the same cluster.

False: the test reports "failure".

イロト イボト イヨト イヨト

CGR condition

Step 1. Compute subgradients from (\mathbf{x}', ω') and check if they satisfy the CGR condition.

True: points clustered in Step 0 indeed belong in the same cluster.

False: the test reports "failure".

CGR condition by Chiquet, Gutierrez and Rigaill (2017)

Suppose $\emptyset \neq C \subseteq \{1, ..., n\}$. Suppose there exists a solution q_{ij}^* for $j \in C - \{i\}$, $i \in C$ to the following system.

$$\begin{aligned} \mathbf{a}_{i} - \frac{1}{|C|} \sum_{l \in C} \mathbf{a}_{l} &= \lambda \sum_{j \in C - \{i\}} \mathbf{q}_{ij}^{*} \quad \forall i \in C, \\ \left\| \mathbf{q}_{ij}^{*} \right\| &\leq 1 \qquad \forall i, j \in C, i \neq j, \\ \mathbf{q}_{ij}^{*} &= -\mathbf{q}_{ji}^{*} \qquad \forall i, j \in C, i \neq j. \end{aligned}$$
(1)

Then there exists an $\hat{x} \in \mathbb{R}^d$ such that the minimizer x^* of our sum-of-norms clustering problem satisfies $x_i^* = \hat{x}$ for $i \in C$.

< 日 > < 同 > < 三 > < 三 > <

CGR condition

Step 1. Compute subgradients from (\mathbf{x}', ω') and check if they satisfy the CGR condition.

True: points clustered in Step 0 indeed belong in the same cluster.

False: the test reports "failure".

CGR condition by Chiquet, Gutierrez and Rigaill (2017)

Suppose $\emptyset \neq C \subseteq \{1, ..., n\}$. Suppose there exists a solution q_{ij}^* for $j \in C - \{i\}$, $i \in C$ to the following system.

$$\begin{aligned} \mathbf{a}_{i} - \frac{1}{|C|} \sum_{l \in C} \mathbf{a}_{l} &= \lambda \sum_{j \in C - \{i\}} \mathbf{q}_{ij}^{*} \quad \forall i \in C, \\ \left\| \mathbf{q}_{ij}^{*} \right\| &\leq 1 \qquad \forall i, j \in C, i \neq j, \\ \mathbf{q}_{ij}^{*} &= -\mathbf{q}_{ji}^{*} \qquad \forall i, j \in C, i \neq j. \end{aligned}$$
(1)

Then there exists an $\hat{x} \in \mathbb{R}^d$ such that the minimizer x^* of our sum-of-norms clustering problem satisfies $x_i^* = \hat{x}$ for $i \in C$.

Jiang, Vavasis (Cornell, Waterloo)

Certifying clusters from SON clustering

Distinct clusters

Step 2. Check that no two clusters are distance $\leq c_n \mu^{1/2}$ of each other.

True: all clusters identified in step 0 are distinct.

False: the test reports "failure".

3

イロト イポト イヨト イヨト

Distinct clusters

Step 2. Check that no two clusters are distance $\leq c_n \mu^{1/2}$ of each other.

True: all clusters identified in step 0 are distinct.

False: the test reports "failure".

Distinct clustering theorem

If there exist $i, j \in C$ such that $||\mathbf{x}_i - \mathbf{x}_j|| > 2\sqrt{2\mu}$, then i, j are not in the same cluster and C is not a cluster or part of a larger cluster. (The result holds due to strong convexity.)

ヘロト ヘヨト ヘヨト

Distinct clusters

Step 2. Check that no two clusters are distance $\leq c_n \mu^{1/2}$ of each other.

True: all clusters identified in step 0 are distinct.

False: the test reports "failure".

Distinct clustering theorem

If there exist $i, j \in C$ such that $||\mathbf{x}_i - \mathbf{x}_j|| > 2\sqrt{2\mu}$, then i, j are not in the same cluster and C is not a cluster or part of a larger cluster. (The result holds due to strong convexity.)

A sufficient condition for distinct clusters: If all clusters are pairwise far apart, then no cluster identified in Step 0 is actually a subcluster of a larger cluster.

< 日 > < 同 > < 三 > < 三 > <

If the test reports "success":

⁴Instead of using obvious subgradients, we constructed a version of subgradients that automatically satisfies the equalities in (1).

If the test reports "success":

Successful step 1: our subgradients⁴ satisfy the CGR condition;

⁴Instead of using obvious subgradients, we constructed a version of subgradients that automatically satisfies the equalities in (1).

If the test reports "success":

Successful step 1: our subgradients⁴satisfy the CGR condition; \rightarrow CGR condition certifies that points clustered in Step 0 indeed belong in the same cluster.

⁴Instead of using obvious subgradients, we constructed a version of subgradients that automatically satisfies the equalities in (1).

If the test reports "success":

Successful step 1: our subgradients⁴ satisfy the CGR condition; \rightarrow CGR condition certifies that points clustered in Step 0 indeed belong in the same cluster.

⁴Instead of using obvious subgradients, we constructed a version of subgradients that automatically satisfies the equalities in (1).

If the test reports "success":

Successful step 2: Each pair of clusters are well separated;

 \rightarrow "distinct cluster theorem" certifies that no cluster identified in Step 0 is actually a subcluster of a larger cluster.

⁴Instead of using obvious subgradients, we constructed a version of subgradients that automatically satisfies the equalities in (1).

If the test reports "success":

Successful step 2: Each pair of clusters are well separated;

 $\rightarrow\,$ "distinct cluster theorem" certifies that no cluster identified in Step 0 is actually a subcluster of a larger cluster.

Jiang, Vavasis (Cornell, Waterloo) Certifyin

⁴Instead of using obvious subgradients, we constructed a version of subgradients that automatically satisfies the equalities in (1).

Theorem 2. If an interior-point algorithm is used, then the test is guaranteed to report 'success' after a finite number of iterations except ...

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem 2. If an interior-point algorithm is used, then the test is guaranteed to report 'success' after a finite number of iterations except ...

the test may never report 'success' for the particular values of λ at which clusters fuse to form a larger cluster.

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem 2. If an interior-point algorithm is used, then the test is guaranteed to report 'success' after a finite number of iterations except ...

the test may never report 'success' for the particular values of λ at which clusters fuse to form a larger cluster.

Remark 1: Proof of Theorem 2 requires a deeper dive into duality.

ヘロト ヘヨト ヘヨト

Theorem 2. If an interior-point algorithm is used, then the test is guaranteed to report 'success' after a finite number of iterations except ...

the test may never report 'success' for the particular values of λ at which clusters fuse to form a larger cluster.

Remark 1: Proof of Theorem 2 requires a deeper dive into duality.

Remark 2: Ingredient of Theorem 2 proof is a result by Luo, Sturm and Zhang (1998) that, provided the optimizer satisfies strict complementarity, interior point iterates are $O(\mu)$ away from optimizer, where μ is the duality gap (scaled central path parameter).

イロト 不得 トイヨト イヨト

Not surprising that test fails when λ is exactly at a fusion value λ^* , since any arbitrarily small negative perturbation $\lambda^*-\epsilon$ yields a different clustering.

< □ > < 同 > < 回 > < 回 > < 回 >

Not surprising that test fails when λ is exactly at a fusion value λ^* , since any arbitrarily small negative perturbation $\lambda^*-\epsilon$ yields a different clustering.

Complete cluster identification for these values of λ^* is *ill-posed*; unreasonable to expect an algorithm to satisfy a guarantee for such a problem.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Summary

Test: We propose a test that takes an approximate solution and attempts to determine all clusters. The test may report 'success' or 'failure'.

イロト イポト イヨト イヨト

Summary

Test: We propose a test that takes an approximate solution and attempts to determine all clusters. The test may report 'success' or 'failure'.

Theorem 1. If the test reports 'success', then the clusters are correctly identified.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem 1. If the test reports 'success', then the clusters are correctly identified.

Theorem 2. If an interior-point algorithm is used, then the test is guaranteed to report 'success' after a finite number of iterations except when the clustering problem is ill-posed.

・ 何 ト ・ ヨ ト ・ ヨ ト

Squared versus unsquared norm

If the norms in the second term were also squared, then it would almost never happen that $x_i^* = x_i^*$ when $i \neq j$.

$$\min_x(x+1)^2/2 + \lambda|x-2|$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Squared versus unsquared norm

If the norms in the second term were also squared, then it would almost never happen that $x_i^* = x_i^*$ when $i \neq j$.

Squared versus unsquared norm

If the norms in the second term were also squared, then it would almost never happen that $\mathbf{x}_i^* = \mathbf{x}_i^*$ when $i \neq j$.

Squared versus unsquared norm

If the norms in the second term were also squared, then it would almost never happen that $\mathbf{x}_i^* = \mathbf{x}_i^*$ when $i \neq j$.

Certifying clusters from SON clustering

Squared versus unsquared norm

If the norms in the second term were also squared, then it would almost never happen that $\mathbf{x}_i^* = \mathbf{x}_i^*$ when $i \neq j$.

Squared versus unsquared norm

If the norms in the second term were also squared, then it would almost never happen that $x_i^* = x_i^*$ when $i \neq j$.

 $\min_{x}(x+1)^{2}/2 + \lambda |x-2|$

Certifying clusters from SON clustering

Squared versus unsquared norm

If the norms in the second term were also squared, then it would almost never happen that $\mathbf{x}_i^* = \mathbf{x}_i^*$ when $i \neq j$.

Jiang, Vavasis (Cornell, Waterloo)

Certifying clusters from SON clustering