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Clustering

Informally: Given n points a1, . . . , an ∈ Rd , partition {1, . . . , n} into
k subsets C1, . . . ,Ck such that for i ∈ Cm, i

′ ∈ Cm′ , dist(ai , ai ′) is
small iff m = m′.

Figure: Visualization of a possible clustering
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Example: Clustering (d = 2, n = 20)
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Example: Clustering (d = 2, n = 20)

Yellow nodes are in singleton clusters.
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Lloyd’s algorithm

Best known method for clustering is Lloyd’s algorithm (“k-means”).
Assume k (number of clusters) is part of the input.

1. Randomly partition n points into k random subsets
C1, . . . ,Ck , which serve as initial clusters.

2. Alternate the following two operations until the cluster
assignments stop changing:

(a) For each cluster Ci , compute the cluster centroids.
(b) Assign each observation to the cluster whose centroid is

closest.

Issues with Lloyd’s algorithm

Corresponds to nonconvex optimization, so many local minimizers,

→ sensitive to initialization;

→ hard to prove properties of clustering output.
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Sum-of-norms clustering

Find clusters by solving the convex optimization problem:

min
x1,...,xn

1

2

n∑
i=1

∥xi − ai∥2 + λ
∑

1≤i<j≤n

∥xi − xj∥ ,

which is known as the sum-of-norms clustering1.

Lloyd’s algorithm Sum-of-norms clustering

convexity non-convex strongly convex

minimizers many local minimizers unique local (and global) minimizer

initialization sensitive to initialization independent of initialization

cluster output hard to prove properties agglomerative2, recovery of MoG3

1
Discovered independently by Pelckmans et al. (2005), Lindsten et al. (2011), Hocking et al. (2011).

2
Hocking et al. (2011), Chiquet et al (2014)

3
Panahi et al. (2017), Sun et al. (2018), Jiang, Vavasis, Zhai (2020)
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Sum-of-norms clustering formulation

minx1,...,xn
1
2

∑n
i=1 ∥xi − ai∥2 + λ

∑
1≤i<j≤n ∥xi − xj∥
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Sum-of-norms clustering formulation

minx1,...,xn
1
2

∑n
i=1 ∥xi − ai∥2 + λ

∑
1≤i<j≤n ∥xi − xj∥

Data ai ’s: Given n observations a1, . . . , an
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Sum-of-norms clustering formulation

minx1,...,xn
1
2

∑n
i=1 ∥xi − ai∥2 + λ

∑
1≤i<j≤n ∥xi − xj∥

Variable xi ’s: Define unconstrained variable xi for i = 1, . . . , n.

We may interpret the optimal x∗
i as the cluster centroid that i is closest to.
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Sum-of-norms clustering formulation

minx1,...,xn
1
2

∑n
i=1 ∥xi − ai∥2 + λ

∑
1≤i<j≤n ∥xi − xj∥

Intuition: first term favors x∗
i close to ai , while second term tends to

make x∗
i for many i ’s equal to each other.
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Sum-of-norms clustering formulation

minx1,...,xn
1
2

∑n
i=1 ∥xi − ai∥2 + λ

∑
1≤i<j≤n ∥xi − xj∥

Cluster recovery: points i , j get clustered together iff x∗
i = x∗

j
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Sum-of-norms clustering formulation

minx1,...,xn
1
2

∑n
i=1 ∥xi − ai∥2 + λ

∑
1≤i<j≤n ∥xi − xj∥

Role of λ: when λ = 0, all noncoincident ai ’s are in singleton clusters.
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Sum-of-norms clustering formulation

minx1,...,xn
1
2

∑n
i=1 ∥xi − ai∥2 + λ

∑
1≤i<j≤n ∥xi − xj∥

Role of λ: there exists λ̄ (depending on data) such that for all λ ≥ λ̄,

all ai ’s are in one large cluster.
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Sum-of-norms clustering formulation

minx1,...,xn
1
2

∑n
i=1 ∥xi − ai∥2 + λ

∑
1≤i<j≤n ∥xi − xj∥

Role of λ: as λ increases, number of clusters goes down.

Thus, λ controls the number of clusters indirectly.
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Identifying clusters

Issue: Identifying the clusters apparently requires exact knowledge

of the optimizer, but all known algorithms are iterative.
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Identifying clusters

Issue: Identifying the clusters apparently requires exact knowledge

of the optimizer, but all known algorithms are iterative.

How to identify clusters from an approximate solution with

mathematical guarantee instead of using an exact optimizer?
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Identifying clusters

Issue: Identifying the clusters apparently requires exact knowledge

of the optimizer, but all known algorithms are iterative.

Let x ′
1, . . . , x ′

n be an approximate optimizer from an iterative method.
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Identifying clusters

Issue: Identifying the clusters apparently requires exact knowledge

of the optimizer, but all known algorithms are iterative.

Authors in practice use a tolerance:

say i , j are in the same cluster if
∥∥x ′

i − x ′
j

∥∥ ≤ ϵ.
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Identifying clusters

Issue: Identifying the clusters apparently requires exact knowledge

of the optimizer, but all known algorithms are iterative.

For which ϵ is the recovery of the true clustering guaranteed?

Do the recovery of a MoG and the agglomerative property still hold?
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Identifying clusters

Issue: Identifying the clusters apparently requires exact knowledge

of the optimizer, but all known algorithms are iterative.

What if ∥x ′
1 − x ′

2∥ < ϵ, ∥x ′
1 − x ′

3∥ < ϵ, ∥x ′
2 − x ′

3∥ > ϵ?
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Our contributions

Test: We propose a test that takes an approximate solution and attempts
to determine all clusters. The test may report ‘success’ or ‘failure’.

Theorem 1. If the test reports ‘success’, then the clusters are correctly
identified.

Theorem 2. If an interior-point algorithm is used, then the test is
guaranteed to report ‘success’ after a finite number of iterations except
. . .
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When does the test fail?

. . . the test may never report ‘success’ for the particular values of λ at
which clusters fuse to form a larger cluster.

Because of the agglomeration property, there are at most n such discrete
values of λ for which the test may never succeed.
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The test

Input: a primal and dual feasible solution (x ′, ω′), duality gap µ

Step 0. Determine all clusters greedily according to x ′, µ:

Step 1. Compute subgradients from (x ′, ω′) and check if they satisfy

the CGR condition (will specify later).
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True: points clustered in Step 0 indeed belong in the same cluster,

proceed to Step 2.
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1/2 of each other.

Jiang, Vavasis (Cornell, Waterloo) Certifying clusters from SON clustering 10 / 17



The test

Input: a primal and dual feasible solution (x ′, ω′), duality gap µ

Step 0. Determine all clusters greedily according to x ′, µ:

Step 1. Compute subgradients from (x ′, ω′) and check if they satisfy

the CGR condition (will specify later).

Step 2. Check that no two clusters are distance ≤ cnµ
1/2 of each other.

True: all clusters identified in step 0 are distinct.

Jiang, Vavasis (Cornell, Waterloo) Certifying clusters from SON clustering 10 / 17



The test

Input: a primal and dual feasible solution (x ′, ω′), duality gap µ

Step 0. Determine all clusters greedily according to x ′, µ:

Step 1. Compute subgradients from (x ′, ω′) and check if they satisfy

the CGR condition (will specify later).

Step 2. Check that no two clusters are distance ≤ cnµ
1/2 of each other.

True: all clusters identified in step 0 are distinct.

False: the test reports “failure”.

Jiang, Vavasis (Cornell, Waterloo) Certifying clusters from SON clustering 10 / 17



The test

Input: a primal and dual feasible solution (x ′, ω′), duality gap µ

Step 0. Determine all clusters greedily according to x ′, µ:

Step 1. Compute subgradients from (x ′, ω′) and check if they satisfy

the CGR condition (will specify later).

Step 2. Check that no two clusters are distance ≤ cnµ
1/2 of each other.

True: all clusters identified in step 0 are distinct.

False: the test reports “failure”.

Jiang, Vavasis (Cornell, Waterloo) Certifying clusters from SON clustering 10 / 17



CGR condition

Step 1. Compute subgradients from (x ′, ω′) and check if they satisfy the
CGR condition.

True: points clustered in Step 0 indeed belong in the same cluster.

False: the test reports “failure”.

CGR condition by Chiquet, Gutierrez and Rigaill (2017)

Suppose ∅ ≠ C ⊆ {1, . . . , n}. Suppose there exists a solution q∗
ij for

j ∈ C − {i}, i ∈ C to the following system.

ai −
1

|C |
∑
l∈C

al = λ
∑

j∈C−{i}

q∗
ij ∀i ∈ C ,

∥∥q∗
ij

∥∥ ≤ 1 ∀i , j ∈ C , i ̸= j ,

q∗
ij = −q∗

ji ∀i , j ∈ C , i ̸= j .

(1)

Then there exists an x̂ ∈ Rd such that the minimizer x∗ of our sum-of-norms
clustering problem satisfies x∗

i = x̂ for i ∈ C .

A sufficient condition for clustering: If there exists a solution to system
(1), then points in C indeed belong to the same cluster.
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Distinct clusters

Step 2. Check that no two clusters are distance ≤ cnµ
1/2 of each other.

True: all clusters identified in step 0 are distinct.

False: the test reports “failure”.

Distinct clustering theorem

If there exist i , j ∈ C such that ∥xi − xj∥ > 2
√
2µ, then i , j are not in the

same cluster and C is not a cluster or part of a larger cluster. (The result
holds due to strong convexity.)

A sufficient condition for distinct clusters: If all clusters are pairwise
far apart, then no cluster identified in Step 0 is actually a subcluster of a
larger cluster.
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Establishing Theorem 1 (correctness of the test)

If the test reports “success”:

4
Instead of using obvious subgradients, we constructed a version of subgradients that automatically satisfies

the equalities in (1).
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Establishing Theorem 2 (eventual success)

Theorem 2. If an interior-point algorithm is used, then the test is guar-
anteed to report ‘success’ after a finite number of iterations except . . .

the test may never report ‘success’ for the particular values of λ at which
clusters fuse to form a larger cluster.

Remark 1: Proof of Theorem 2 requires a deeper dive into duality.

Remark 2: Ingredient of Theorem 2 proof is a result by Luo, Sturm
and Zhang (1998) that, provided the optimizer satisfies strict
complementarity, interior point iterates are O(µ) away from
optimizer, where µ is the duality gap (scaled central path
parameter).
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Remark 2: Ingredient of Theorem 2 proof is a result by Luo, Sturm
and Zhang (1998) that, provided the optimizer satisfies strict
complementarity, interior point iterates are O(µ) away from
optimizer, where µ is the duality gap (scaled central path
parameter).
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Explanation of failure case

Not surprising that test fails when λ is exactly at a fusion value λ∗, since
any arbitrarily small negative perturbation λ∗− ϵ yields a different cluster-
ing.

Complete cluster identification for these values of λ∗ is ill-posed; unrea-
sonable to expect an algorithm to satisfy a guarantee for such a problem.
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Summary

Test: We propose a test that takes an approximate solution and attempts
to determine all clusters. The test may report ‘success’ or ‘failure’.

Theorem 1. If the test reports ‘success’, then the clusters are correctly
identified.

Theorem 2. If an interior-point algorithm is used, then the test is
guaranteed to report ‘success’ after a finite number of iterations except
when the clustering problem is ill-posed.
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Appendix: Squared versus unsquared norm: simple example

Squared versus unsquared norm

If the norms in the second term were also squared, then it would
almost never happen that x∗

i = x∗
j when i ̸= j .

minx(x + 1)2/2 + λ|x − 2|
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