Recovery of a mixture of Gaussians by sum-of-norms clustering

Tao Jiang¹ Stephen Vavasis¹ Chen Wen Zhai ^{1 2}

¹Department of Combinatorics & Optimization University of Waterloo

²Department of Statistics & Actuarial Science University of Waterloo

The Sixth International Conference on Continuous Optimization

Jiang, Vavasis, Zhai (UW) Recovery of a mixture of Gaussians by sum-of

Outline

Sum-of-norms clustering

- (2) Recovery result of a mixture of Gaussians
- Cluster characterization theorem 3
- 4 Recovery theorem of a mixture of Gaussians

4 E N

Clustering

Given *n* points $a_1, a_2, ..., a_n$ lying in \mathbb{R}^d , one seeks to partition $\{1, ..., n\}$ into *K* sets $C_1, ..., C_K$ such that the a_i 's for $i \in C_m$ are closer to each other than to the a_i 's for $i \in C_{m'}$, $m' \neq m$.

Figure: Visualization of a possible clustering

Jiang, Vavasis, Zhai (UW) Recovery of a mixture of Gaussians by sum-of

August 7, 2019 3 / 25

Traditional clustering models

Here is a hierarchical clustering model

$$egin{array}{ll} \min_{x_1,\ldots,x_n\in {f R}^d} & rac{1}{2}\sum_{i=1}^n \|x_i-a_i\|^2 \ {
m subject to} & \sum_{i< j} 1_{x_i
eq x_j} \leq t \end{array}$$

Let $x_1^*, x_2^*, ..., x_n^*$ be the optimizer of (1). For any distinct pair $i, j \in \{1, 2, ..., n\}$,

- if $x_i^* = x_i^*$, points *i*, *j* are assigned to the same cluster;
- Otherwise, points *i*, *j* are assigned to different clusters;

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

(1)

Traditional clustering models

Here is a hierarchical clustering model

$$\begin{array}{ll} \min_{x_1,\ldots,x_n \in \mathbb{R}^d} & \frac{1}{2} \sum_{i=1}^n \|x_i - a_i\|^2 \\ \text{subject to} & \sum_{i < j} 1_{x_i \neq x_j} \le t \end{array}$$

Remark

• If $t \ge \frac{n(n-1)}{2}$, (1) is unconstrained and $x_i^* = a_i$ for all $i \in \{1, 2, ..., n\}$; • If $t = \frac{n(n-1)}{2} - 1$, one distinct pair $i, j \in \{1, 2, ..., n\}$ is forced to fuse; • If t = 0, $x_i^* = \sum_{i=1}^n \frac{a_i}{n}$.

Problems of traditional clustering models:

- Most are hard combinatorial optimization problems;
- Prior knowledge about the number of clusters is often required;
- Initialization affects the clustering assignment.

A convex clustering model

Hocking et al. (2011) proposed the following convex relaxation of the Hierarchical clustering model.

$$\min_{\substack{x_1, \dots, x_n \in \mathbb{R}^d \\ \text{subject to}}} \quad \frac{1}{2} \sum_{i=1}^n \|x_i - a_i\|^2$$

$$\sum_{i < j} \|x_i - x_j\| \le t$$

$$(2)$$

Here is the Lagrangian formulation of (2).

$$\min_{x_1,...,x_n \in \mathbb{R}^d} \frac{1}{2} \sum_{i=1}^n \|x_i - a_i\|^2 + \lambda \sum_{i < j} \|x_i - x_j\|.$$

Jiang, Vavasis, Zhai (UW)

Recovery of a mixture of Gaussians by sum-of

- 4 同 6 4 日 6 4 日 6

A convex clustering model

$$\min_{x_1,...,x_n \in \mathbb{R}^d} \frac{1}{2} \sum_{i=1}^n \|x_i - a_i\|^2 + \lambda \sum_{i < j} \|x_i - x_j\|.$$
(3)

The formulation (3) is known as sum-of-norms clustering, convex clustering, or clusterpath clustering.

Remark

The formulation (3) is strongly convex.

Let $x_1^*, x_2^*, ..., x_n^*$ be the optimizer of (3). For any distinct pair $i, j \in \{1, 2, ..., n\}$,

- if $x_i^* = x_i^*$, points *i*, *j* are assigned to the same cluster;
- Otherwise, points *i*, *j* are assigned to different clusters;

- Setup: Given K Gaussians with means $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$, variances $\sigma_1^2, \ldots, \sigma_K^2$, and probabilities w_1, \ldots, w_K , positive and summing to 1.
- Generative model: One draws n i.i.d. samples from K Gaussians.
 - An index m ∈ {1,..., K} is selected at random according to probabilities w₁,..., w_K,
 - A point *a* is chosen according to the spherical Gaussian distribution $N(\mu_m, \sigma_m^2 I)$.

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

Recovery condition by Panahi et al. (2017)

Recovery condition (Panahi et al., 2017)

For the appropriate choice of λ , sum-of-norms clustering formulation (3) exactly recovers a mixture of Gaussians provided that for all m, m', $1 \le m < m' \le K$,

$$\|\mu_m - \mu_{m'}\| \ge \frac{CK\sigma_{\max}}{w_{\min}} \operatorname{polylog}(n).$$
(4)

- C: some constant
- K: the number of Gaussians
- polylog(n): a polynomial function with respect to log(n)
- σ_{max} : $max\{\sigma_1, \sigma_2, ..., \sigma_K\}$
- w_{min} : $min\{w_1, w_2, ..., w_K\}$

Recovery condition by Panahi et al. (2017)

$$\|\mu_{m} - \mu_{m'}\| \geq \frac{CK\sigma_{\max}}{w_{\min}} \operatorname{polylog}(n).$$

Remark

As the number of samples n tends to infinity, the bound implies that distinguishing the clusters becomes increasingly difficult

Figure: 2D Gaussians with 1000 samples

Figure: polylog(n) VS n

Jiang, Vavasis, Zhai (UW)

Recovery of a mixture of Gaussians by sum-of

August 7, 2019 11 / 25

Main contributions

We prove (3) can correctly cluster the points lying within some fixed number (θ) of standard-deviations for each mean even as $n \to \infty$.

Jiang, Vavasis, Zhai (UW)

Recovery of a mixture of Gaussians by sum-of

August 7, 2019 12 / 25

Our recovery condition

Define
$$V_m = \{a_i : \|a_i - \mu_m\| \le \theta \sigma_m\}, \quad m = 1, \dots, K.$$

Recovery condition

There is a λ such that with probability tending to 1 exponentially fast in *n*, the points in V_m are in the same cluster for any $m = 1, \ldots, K$, and these clusters are distinct, provided that

$$\min_{1 \le m < m' \le \kappa} \|\mu_m - \mu_{m'}\| > \frac{4\theta\sigma_{\max}}{F(\theta, d)w_{\min} - \epsilon}.$$
(5)

- * *d*: the dimension of the data space
- θ: the number of standard-deviations from the mean

- * $\epsilon > 0$: an arbitrary number
- F(θ, d) denotes the cumulative density function of the chi distribution with d degrees of freedom

Our recovery condition

$$\min_{1 \le m < m' \le \kappa} \|\mu_m - \mu_{m'}\| > \frac{4\theta\sigma_{\max}}{F(\theta, d)w_{\min} - \epsilon}$$

Remark

The dependence of the right-hand side on n as well as the factor of K has been removed.

Jiang, Vavasis, Zhai (UW) Recovery of a mixture of Gaussians by sum-of A

イロト 不得下 イヨト イヨト

Cluster characterization theorem by Chiquet et al. (2017)

Let x_1^*, \ldots, x_n^* denote the optimizer of (3). Let $x^* := \begin{vmatrix} x_1 \\ x_2^* \\ x_n^* \end{vmatrix} \in \mathbb{R}^{nd}$.

Suppose $\emptyset \neq C \subseteq \{1, \ldots, n\}$.

(a) Necessary condition

If for some $\hat{x} \in \mathbb{R}^d$, $x_i^* = \hat{x}$ for $i \in C$ and $x_i^* \neq \hat{x}$ for $i \notin C$, then there exist z_{ij}^* for $i, j \in C$, $i \neq j$, which solve

$$a_{i} - \frac{1}{|C|} \sum_{l \in C} a_{l} = \lambda \sum_{j \in C - \{i\}} z_{ij}^{*} \quad \forall i \in C,$$

$$\|z_{ij}^{*}\| \leq 1 \qquad \forall i, j \in C, i \neq j,$$

$$z_{ij}^{*} = -z_{ji}^{*} \qquad \forall i, j \in C, i \neq j.$$
(6)

Jiang, Vavasis, Zhai (UW)

Recovery of a mixture of Gaussians by sum-of

イロト 不得下 イヨト イヨト

Cluster characterization theorem by Chiquet et al. (2017)

Suppose
$$\emptyset \neq C \subseteq \{1, \ldots, n\}$$
.

(b) Sufficient condition

Suppose there exists a solution z_{ij}^* for $j \in C - \{i\}$, $i \in C$ to the following conditions.

$$\begin{aligned} \mathsf{a}_{i} &- \frac{1}{|\mathcal{C}|} \sum_{l \in \mathcal{C}} \mathsf{a}_{l} = \lambda \sum_{j \in \mathcal{C} - \{i\}} z_{ij}^{*} \quad \forall i \in \mathcal{C}, \\ & \left\| z_{ij}^{*} \right\| \leq 1 \qquad \forall i, j \in \mathcal{C}, i \neq j, \\ & z_{ij}^{*} = -z_{ji}^{*} \qquad \forall i, j \in \mathcal{C}, i \neq j. \end{aligned}$$

Then there exists an $\hat{x} \in \mathbb{R}^d$ such that the minimizer x^* of (3) satisfies $x_i^* = \hat{x}$ for $i \in C$.

16 / 25

Cluster characterization theorem by Chiquet et al. (2017)

With the cluster chracterization theorem,

- one can chacterize the cluster assignment without the information of other points;
- one can prove the agglomeration property of sum-of-norms clustering with unitary weight (conjectured by Hocking et al. (2011)).

Consider a $\bar{\lambda} \ge \lambda$ and its corresponding sum-of-norms cluster model:

$$\min_{x_1,...,x_n} \frac{1}{2} \sum_{i=1}^n \|x_i - a_i\|^2 + \bar{\lambda} \sum_{i < j} \|x_i - x_j\|.$$
(7)

Corollary (Chiquet et al., 2017)

If there is a *C* such that minimizer x^* of (3) satisfies $x_i^* = \hat{x}$ for $i \in C$, $x_i^* \neq \hat{x}$ for $i \notin C$ for some $\hat{x} \in \mathbb{R}^d$, then there exists an $\hat{x}' \in \mathbb{R}^d$ such that the minimizer of (7), \bar{x}^* , satisfies $\bar{x}_i^* = \hat{x}'$ for $i \in C$.

Jiang, Vavasis, Zhai (UW) Recovery of a mixture of Gaussians by sum-of

August 7, 2019 17 / 25

Recovery of a mixture of Gaussians theorem

Let the vertices $a_1, \ldots, a_n \in \mathbb{R}^d$ be generated from a mixture of KGaussian distributions with parameters μ_1, \ldots, μ_K , $\sigma_1^2, \ldots, \sigma_K^2$, and w_1, \ldots, w_K . Let $\theta > 0$ be given, and let

$$V_m = \{a_i : \|a_i - \mu_m\| \le \theta \sigma_m\}, \quad m = 1, \dots, K.$$

Let $\epsilon > 0$ be arbitrary.

Jiang, Vavasis, Zhai (UW)

Recovery of a mixture of Gaussians by sum-of

Theorem (Lower Bound)

For any m = 1, ..., K, with probability exponentially close to 1 (and depending on ϵ) as $n \to \infty$, for the solution x^* computed by (3), the points in V_m are in the same cluster provided

$$\lambda \geq \frac{2\theta\sigma_m}{(F(\theta,d)w_m-\epsilon)n}.$$

(8)

* $F(\theta, d)$: the cumulative density function of the chi distribution with d degrees of freedom.

Theorem (Upper Bound)

Furthermore, the cluster associated with V_m is distinct from the cluster associated with $V_{m'}$, $1 \le m < m' < k$, provided that

$$\lambda < \frac{\|\mu_m - \mu_{m'}\|}{2(n-1)}.\tag{9}$$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Jiang, Vavasis, Zhai (UW) Recovery of a mixture of Gaussians by sum-of August 7, 2019 20 / 25

Provided that

$$\frac{2\theta\sigma_m}{(F(\theta,d)w_m-\epsilon)n} < \frac{\|\mu_m-\mu_{m'}\|}{2(n-1)},$$

there exists a λ so that the solution to (3) can simultaneously place all points in V_m into the same cluster for each $m = 1, \ldots, K$ while distinguishing the clusters.

くほと くほと くほと

21 / 25

- The key technique is the cluster characterization theorem, which decouples the clusters from each other so that each can be analyzed in isolation.
- The analysis can be extended to Gaussians with a more general covariance matrix, uniform distributions and many kinds of deterministic distributions.
- The cluster characterization theorem does not apply to most other clustering algorithms, or even to sum-of-norm clustering in the case of unequal weights.

くほと くほと くほと

Reference I

- Emmanuel J. Cand'es and Benjamin Recht. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717, Apr 2009
- E. Chi and S. Steinerberger. Recovering trees with convex clustering. https://arxiv.org/abs/1806.11096, 2018
- J. Chiquet, P. Gutierrez, and G. Rigaill. Fast tree inference with weighted fusion penalties. *Journal of Computational and Graphical Statistics*, 26:205216, 2017.
 - Jean-Baptiste Hiriart-Urruty and Claude Lemar echal. Fundamentals of convex analysis.Springer, 2012.
 - T. Hocking, A. Joulin, F. Bach, and J.-P. Vert. Clusterpath: An algorithm for clustering using convex fusion penalties. In *International Conference on Machine Learning*, 2011

(日) (同) (三) (三) (三)

Reference II

- F. Lindsten, H. Ohlsson, and L. Ljung. Clustering using sum-of-norms regularization: With application to particle filter output computation. In *IEEE Statistical Signal Pro-cessing Workshop (SSP)*, 2011.
- A. Panahi, D. Dubhashi, F. Johansson, and C. Bhattacharyya. Clustering by sum of norms: Stochastic incremental algorithm, convergence and cluster recovery. *Journal of Machine Learning Research*, 70, 2017.
- Peter Radchenko and Gourab Mukherjee. Convex clustering via l1 fusion penalization. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(5):15271546, 2017.
- S. Shalev-Shwartz and S. Ben-David. *Understanding machine learning: From theory to algorithms.* Cambridge University Press, 2014.

イロト 不得下 イヨト イヨト

- D. Sun, K.-C. Toh, and Y. Yuan. Convex clustering: model, theoretical guarantees and efficient algorithm. https://arxiv.org/abs/1810.02677, 2018.
- K. Pelckmans, J. De Brabanter, J. A. K. Suykens, and B. De Moor. Convex cluster shrinkage. Available online at ftp://ftp.esat.kuleuven.ac.be/sista/kpelckma/ccspelckmans2005
 .pdf, 2005.

くほと くほと くほと